The Gilroy


Gilroy Lab Research Focus

We are interested in how plants sense and respond to their environment and how these signals regulate plant development. The research emphasis of the lab is to try and understand these processes at the cellular level. We combine advanced microscopy approaches such as confocal microscopy with biochemistry and molecular biology to address a wide range of biological questions:

    1. How do plants sense and respond to abiotic stresses?

    2. How do roots and shoots sense and respond to gravity and touch stimuli?

    3. How do plants regulate growth?

    4. How do plants respond to the spaceflight environment?

Right: Arabidopsis plant having its long distance systemic signaling system being activated by addition of the human neurotransmitter Glutamate.

Targeting Improved Cotton through Orbital Cultivation (TIC-TOC)

After being put on hold in 2020 due to COVID travel restrictions TIC TOC is now ready for a launch! It's due to launch to the ISS on SpaceX dragon Crew Resupply Mission - 22 this summer (2021)! Watch this place for latest data from this program. The legacy GMO AVP-OX technology demonstration may identify new mechanism to enhance plant resistance to drought and salinity stress.

Do plants feel pain?

If so what damages plants and how?

Mechanical destruction, herbivores, microbes, heat, cold, drought, flood, atmospheric gaseous content, light and ionizing radiation. But can gravity a stress?

Right Video: Fluorescence time-lapse photography showing Arabidopsis plants responding to a wound by sending a long distance "Calcium wave" across the plant. This signal activating the Jasmonic acid signaling system and inducing systemic defense networks. There are many environmental signals that cause "calcium waves".

APEX5 can we engineer plants that don't feel "pain"?

The Gilroy lab analyzes the molecular biology of Arabidopsis plants with altered genes to in order to investigate their function. The environment combined with the plants genetics creates what we call the plant "phenotype". Sometime genes make plants more sensitive to environmental stress and others make plants more resistant. The TOAST database allows citizen scientists to find genes that respond to spaceflight.

Plants are an essential part of a bioregenerative life support system

Right Video: Astronauts Scott Kelly, Kjell Lindgren, and Kimiya Yui all munched on red romaine lettuce this afternoon, except unlike your sad desk salad, this produce was grown on the International Space Station. It was the first time people have eaten food cultivated in space. Aug 10, 2015 the birth of the first ever Space-Farmers. Video Curtesy of UW-Madison.

What is the most stressful factor that life encounters living in low earth orbit on the ISS?

Right Video: Time-lapse photography of astronaut Scott Tingle harvesting Arabidopsis thaliana samples on the International Space Station (ISS) as part of the Gilroy APEX05 experiment. Video curtsy of NASA.

MANGO: ISS microbiome

Right Video: A video showing the prevalence of microbes in a built environment.

Project MANGO is a collaboration coordinated by the UW Gilroy AstroBiology team with both the NASA Jet Propulsion Laboratory's (JPL) "Interplanetary protection team", the European Bioinformatics Institute (EBI) and the NASA Ames GeneLab team. This collaboration has lead to the incorporation off the ISS microbiome into the MGNfy database making it comparable to the earth and oceans microbiome projects.

We've developed Educational material for high school and undergraduate students who are interested in plant, genetics and / or bioinformatics.

Logo's of the TOAST database

We publish peer reviewed literature such as this review for the Biochemist.

Diagram showing the amount of radiaiton and gravity recieved on the earth, ISS, moon and mars